

Title of the PhD Project	The development of sustainable and novel green membranes for water treatment
Acronym	GreenMemB
Research Fields of the Project	Membrane Science and Technology; Material Science and Engineering; Chemical Engineering
Keywords	Green solvents, green membrane, water treatment, cellulose, deep eutectic solvent
Host Institution, Department and Campus Location	İzmir Institute of Technology, Chemical Engineering Department
PhD Awarding Institution and Graduate Programme	İzmir Institute of Technology, Chemical Engineering Department
Name and Affiliation of Main Supervisor	Prof. Dr. Sacide Alsoy ALTINKAYA
Name and Affiliation of Co- Supervisors	Assoc. Prof. Dr. Sadiye VELİOĞLU
Research Environment and Infrastructure	IZTECH has all the facilities for membrane preparation, testing and characterization. These facilities include membrane casting device, filtration set-up, surface charge, contact angle measurement devices, surface roughness and morphological characterization tools.
	The MEM-CES laboratory at the Institute of Nanotechnology, Gebze Technical University (GTU) has three high-capacity workstations available for molecular simulation. Two of these workstations have 16 cores, while the third has 64 cores. Additionally, the lab is eligible to use the TRUBA cluster system, which offers high GPU and memory allocation for simulations.
Scientific Context of the Project	This study will be structured into three parts. The first part will utilize molecular dynamics simulations (MD) to comprehend the factors influencing cellulose dissolution in various combinations of deep eutectic solvents (DES) and molecular solvents. Specifically, the investigation will focus on understanding the dependence of cellulose dissolution on the molecular structures of both DES and molecular solvents.

Sustainable Water Management Doctoral Programme (Water4All)

	In the second part, experimental studies will be conducted to validate the accuracy
	of the simulation results and identify antimal achieves for many house the decuracy
	of the simulation results and identity optimal solvents for membrane preparation.
	The optimization process will be based on the levels of cellulose dissolution and the
	viscosity of the solvents.
	The third part will involve the development of new high-flux ultrafiltration
	membranes with a low fouling tendency. The impact of the designed solvent's
	structure on the membrane's morphology will be investigated. Additionally, the
	relationship between the morphological features of the membrane and its filtration
	performance will be explored through detailed characterizations. These
	characterizations will encompass viscosity measurements for the polymer solution
	characterizations will encompass viscosity measurements for the polymer solution,
	cioud point measurements, thickness, porosity, pore size, contact angle of the
	membranes, FTIR, XPS, DSC, SEIVI, and AFIVI analyses. The antifouling property of the
	developed membranes will be assessed using model foulants.
Brief Workplan	Academic year of 2024-2025: Screening of DES and molecular solvent combinations
	with molecular simulations
	Academic year of 2025-2026: Membrane development and morphological
	characterization
	Academic year of 2026-2027: Membrane filtration tests
Innovative	The membrane technology cannot be considered environmentally friendly unless the
Aspects of the	fabrication process of the membrane itself is sustainable. This necessitates the
Project	substitution of oil-derived polymers with bio-based or renewable polymer materials
i i oject	and the preference for non-toxic solvents over conventional toxic ones. Cellulose is
	an excellent starting material for membrane preparation since it is one of the most
	abundant and biodegradable materials on Earth. However, the strong intermolecular
	bydrogen bending and crystalling nature of collulose makes its dissolution difficult
	Various columnts including NNI dimethylacotamida/ lithium chlorida (DMAs/LiCl) N
	valious solvents including N,N-unitethylacetanilue/ intituth chioride (DiviAc/Lici), N-
	methylmorpholine-N oxide (Nivivio) mono-nydrate, ionic liquids (ILS), and
	NaOH/urea aqueous solvents were used for dissolving cellulose. Regrettably, these
	solvents rely on harsh chemicals, demand substantial energy for processing, and/or
	generate byproducts that are not entirely environmentally benign. Thus, finding
	environmentally friendly solvents for cellulose dissolution remains an ongoing
	challenge to facilitate the development of green membranes from this abundant
	source.In recent years, deep eutectic solvents (DESs) have received considerable
	attention. These solvents are composed of two or more components linked by
	hydrogen bonding networks, resulting in significantly lower melting temperatures
	compared to the individual components. Various combinations of these components
	offer a broad spectrum of compositions tailored to specific applications. Despite
	numerous tested combinations, cellulose dissolution by DESs has not surpassed 10
	wt% This study aims to develop a new class of green solvents capable of dissolving
	cellulose under mild conditions. This will be achieved by combining different DESS
	with melecular solvents at various ratios. The prejectle nevel by compliming unrefent DESS
	with molecular solvents at various ratios. The project's novelty lies in utilizing both
	experimental and theoretical approaches to understand biopolymer-solvent
	interactions for efficient cellulose dissolution. This generic approach aims to create
	an entirely new class of green solvents capable of dissolving cellulose under mild

	conditions, facilitating the development of cellulose membranes that meet sustainable and green membrane criteria.
Training Opportunities of the Project	In CNR-ITM, PhD students will have access to the laboratory equipment including membrane casting machine, micro-, ultra- and nanofiltration rigs and advanced characterisation and analytical equipment (scanning electron microscopy, contact angle, mechanical test machine, FT-IR and porometer). The students will have also full access to open internet and full free access to scientific journals. The annual meeting organized by the Institute (ITM Seminar Days) can be used by the PhD students as a platform to present their work.
Interdisciplinary Aspects	This project integrates three interdisciplinary fields: membrane science and technology, chemical engineering, and material science and engineering. The expertise required for membrane development, surface modification, and characterization—focusing on filtration capacity and morphological features such as pore size distribution and surface charge—necessitates a background in membrane science. Additionally, proficiency in both theoretical and experimental tools for membrane characterization will require an approach rooted in both Chemical Engineering and Material Science and Engineering.
Intersectoral Mobility Short Visit Secondment	TBD
International Academic Secondment	Host Supervisor: Dr. Alberto Figoli Host Institution: Institute on Membrane Technology (CNR-ITM) National Research Council of Italy Duration: 6 months Estimated Time of Mobility: 2025

Sustainable Water Management Doctoral Programme (Water4All)

Main Supervisor:		
Brief CV	Prof. Dr. Sacide ALSOY ALTINKAYA	
	E-mail: sacidealsoy@iyte.edu.tr	
	Academic Degrees	
	Ph.D. Chemical Engineering, The Pennsylvania State University, USA	1998
	M.Sc. Chemical Engineering, Ege University, Türkiye	1993
	B.Sc. Chemical Engineering, Ege University, Türkiye	1991
	Professional Networks	
	Google Scholar:	
	https://scholar.google.com/citations?user=KkNm_8UAAAAJ&hl=en	
	Research Gate:	
	https://www.researchgate.net/profile/Sacide-Altinkaya	
	Scopus:	
	https://www.scopus.com/authid/detail.uri?authorId=6603259612	
	ORCID:	
	https://orcid.org/0000-0002-7049-7425	
Co-supervisor:		
Brief CV	Assoc. Prof. Dr. Sadiye VELİOĞLU	
	E-mail: sadiyevelioglu@gtu.edu.tr	
	Academic Degrees	
	Ph.D. Material Science and Eng., Istanbul Tech. University, Türkiye	2015
	M.Sc. Material Science and Eng., Istanbul Tech. University, Türkiye	2008
	B.Sc. Chemical Engineering, Istanbul Technical University, Türkiye	2006
	Professional Networks	
	Google Scholar:	
	https://scholar.google.com.sg/citations?user=mNTLPsUAAAAJ&hl=en	

Sustainable Water Management Doctoral Programme (Water4All)

ResearchGate:
https://www.researchgate.net/profile/Sadiye-Velioglu
Scopus:
https://www.scopus.com/authid/detail.uri?authorId=55309011400
ORCID:
https://orcid.org/0000-0002-4812-3611